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Abstract

Non-linearity in plate vibration problems may arise out of material and geometric non-linearity. The
present study focuses only on geometric non-linearity. A new methodology is proposed that can be
employed for plate structure problems having any combination of boundary conditions to determine the
non-linear frequencies and mode shapes. Large amplitude vibration problem is analysed in two parts. The
static problem corresponding to a uniform transverse loading is solved first and the dynamic problem is
subsequently taken up with the known deflection field. Both these problems are formulated through energy
method, the underlying principle being the extremisation of total energy of the system in its equilibrium
state. The solution methodology employs an iterative numerical scheme using the technique of successive
relaxation. The results of non-linear analyses are validated with the published results and excellent
agreement is observed. The solution methodology can be applied to any kind of boundary condition as
pointed out and the back-bone curves documented may be used by the practicing engineers as design
curves.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinearity in plate vibration problems may arise out of both material nonlinearity and
geometric nonlinearity. The first one is due to the nonlinear stress–strain behaviour of material,
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2005.03.003

ding author. Tel./fax: +91 033 2414 6890.

ress: gpohit@vsnl.net (G. Pohit).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

K.N. Saha et al. / Journal of Sound and Vibration 287 (2005) 1031–10441032
whereas large deflections give rise to geometric nonlinearity. Solution of such problems, which are
much more complicated compared to their linear counterpart, was first obtained analytically by
Von Karman [1] for simply supported boundary condition. The method was extended by Chu and
Herrmann [2] and they obtained the in-plane displacement fields by employing double Fourier
series. For solution of generalised problem, other methods have been proposed by various
researchers. Leissa [3] has mentioned some of them; a comprehensive review is carried out by
Sathyamoorthy [4].
Among the recent research work on large amplitude vibration, Kobayashi and Leissa [5]

observed the behaviour of a rectangular shallow shell supported on shear diaphragms by using
Galerkin principle. Wang et al. [6] used a numerical technique based on boundary element method
to solve the static large deflection problems of thin elastic plates. Benamar et al. [7,8] examined,
theoretically and experimentally, the dynamic behaviour of fully clamped rectangular plates under
large amplitudes of vibration. Han and Petyt [9] studied nonlinear vibration frequency and mode
shape of thin isotropic and laminated plates. Later Ribeiro and Petyt [10] have analysed the
problem with internal resonance. Elbeyli and Anlas [11] carried out an analytical study to
determine the nonlinear response of a simply supported plate under transverse harmonic
excitation by using the method of multiple scales. Raju et al. [12] carried out experimental and
theoretical investigations on large amplitude free vibration analysis of square clamped plate
subjected to transverse loading.
Review of the literature indicates that different researchers studied the nonlinear vibration

problem with some specific boundary conditions. Quite a few different techniques have been used
to obtain the natural frequencies and mode shapes. Under this context, the need is felt for
development of a general-purpose method to identify the nonlinear frequencies and mode shapes
of plate for any kind of boundary condition. The present authors [13] developed a new
methodology that can be employed to plate structure having any kind of boundary conditions and
their combinations as well.
The necessary higher-order constitutive functions are formed by following Gram–Schmidt

orthogonalisation procedure, thus making the solution space complete. The solution of the
dynamic problem is obtained through the solution of static deflection field. The static deflection
field required in the present method is obtained for the plate considering uniform transverse
loading condition. The nonlinear static problem is solved by employing an iterative method with
an appropriate relaxation technique.
The vibration mode shapes for all the cases are presented corresponding to the minimum and

maximum amplitudes of vibration. It is observed that the present methodology is quite robust,
stable and realistic and the backbone curves documented may be used by practicing engineers as
design curves.
2. Analysis

In the present paper, the large amplitude vibration problem is analysed in two parts. The static
problem corresponding to a uniform transverse loading is solved first and the dynamic problem is
subsequently taken up with the known deflection field. Both the static and dynamic problems are
formulated through energy method, the underlying principle being the extremisation of total
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energy of the system in its equilibrium state. The plate analysed is assumed to be linearly elastic,
homogeneous, of uniform thickness and sufficiently thin such that the effect of transverse shear
deformation can be neglected. The formulation is carried out for a rectangular plate, but the
results are furnished for square plate, in particular.
A rectangular plate ða � b � hÞ when subjected to a transverse load produces deflection and the

energies stored in the plate are the strain energy due to bending (Ub) and the membrane strain
energy due to stretching (Um). Thus the total strain energy in the plate is U ¼ Ub þ Um.
Expressions for Ub and Um are given in Eqs. (1) and (2), respectively.

Ub ¼
D
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where E, v, r and Dð¼ Eh3=12ð1� u2ÞÞ are elastic modulus, Poisson’s ratio, density and flexural
rigidity of the plate, respectively. The notation lð¼ a=bÞ in the equations is the plate aspect ratio.
The total potential energy (V) due to external transverse loading is given by

V ¼
a2

l

Z 1

0

Z 1

0

�ðqwÞdxdZ�
X

Piwi, (3)

where q is distributed load and Pi is the ith concentrated load at ðxi; ZiÞ.
In Eqs. (1)–(3), the mid-plane coordinates are expressed in dimensionless form as x ¼ x=a,

Z ¼ y=b, to facilitate the computation work, while the dimensions of all other physical quantities,
like load, deflection, etc. are retained as such.
3. The static problem

From the principle of conservation of total energy of the system dðU þ VÞ ¼ 0, the governing
differential equation for the static problem is obtained. The displacement fields of the plate, u, v

and w are expressed by linear combinations of unknown parameters di as follows:

wðx; ZÞ ¼
Xnw

i¼1

difici; uðx; ZÞ ¼
Xnwþnu

i¼1þnw

diaici and vðx; ZÞ ¼
Xnwþnuþnv

i¼1þnwþnu

difibi,

where fðxÞ; cðZÞ; aðxÞ and bðZÞ are sets of orthogonal functions. The starting functions of these
orthogonal sets satisfy the corresponding boundary conditions of the plate system.
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3.1. Generation of starting functions

Beam deflection functions are derived from static deflection shape of the plate under uniform
loading.These are the starting function of the orthogonal sets for fðxÞ and cðZÞ corresponding to
the boundary condition of the plate along the particular coordinate axis. It is found that six basic
beam functions are necessary for all the boundary conditions referred in Ref. [14] and both
transcendental as well as polynomial functions are used for the descriptions of such functions [15].
The higher-order functions are generated through a numerical implementation of Gram–Schmidt
orthogonalisation procedure and thus they take care of the higher-order vibration modes. To cater
to the need of the numerical scheme, all the functions are described numerically at some suitably
selected Gauss points. The details of the procedure of the generation of the function are presented in
Ref. [13]. For S-F beam, the necessary rigid body modes are incorporated by adding appropriate
functions to the corresponding sets of orthogonal functions. The starting functions for aðxÞ and bðZÞ
are obtained from zero displacement in-plane boundary conditions (u ¼ 0 at x ¼ 0 and 1 and v ¼ 0
at Z ¼ 0 and 1) and hence they are assumed as xðx� 1Þ and ZðZ� 1Þ, respectively.

3.2. Solution methodology

In the present paper, results are generated for a plate under uniform loading. Therefore, in the
solution methodology, the terms for concentrated loads (Pi) are dropped. However, they have
been considered for the purpose of comparison only. Substituting the assumed series solutions for
u, v and w in the expressions of U and V, one can obtain the system governing equations in matrix
form ½K 
fdg ¼ qfRg. The unknown coefficients can be obtained from fdg ¼ q½K 
�1fRg through an
iterative scheme [13] using a relaxation technique. In each step of the iteration, the error vector
f�g ¼ q½K 
�1fRg � fdg is computed. If error is not within the permitted value of tolerance, the
process is repeated with new values of fdg until f�g becomes less than the specified tolerance.
4. The dynamic problem

The dynamic problem is formulated following Hamilton’s principle, d
R
ðT � UÞdt ¼ 0, where

the strain energy U corresponds to the deflected shape of the plate and the kinetic energy ðTÞ is
expressed as

T ¼
1

2
rh

a2

l

Z 1

0

Z 1

0

ð _u2 þ _v2 þ _w2ÞdxdZ. (4)

The dynamic displacements wðx; Z; tÞ, uðx; Z; tÞ and vðx; Z; tÞ are assumed to be separable in space
and time. They are constituted through a new set of unknown parameters fdg as

Pnw
i¼1 dificigi,Pnu

i¼1 diþnwaicigiþnw and
Pnv

i¼1 diþnwþnufibigiþnwþnu, respectively. The space functions are
completely known from the static analysis and the set of temporal function is expressed by
giðtÞ ¼ ei$t. Substituting the above series in Eq. (4), the governing equation of the dynamic system
can be written in the form

�o2½M
fdg þ ½K 
fdg ¼ 0. (5)
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½K 
 and ½M
 are symmetric square matrices of order ðnw þ nu þ nvÞ, the details of which are given
in Ref. [13]. The standard eigenvalue problem of Eq. (5) is solved numerically for the natural
frequencies oi by using IMSL routines.
5. Results and discussions

A large amplitude free vibration study is carried out for square plates under uniform pressure
loading. The solution methodology employs an iterative numerical scheme using the technique of
successive relaxation. It is observed that the convergence of the numerical iteration scheme
depends on the tolerance value of the error limit, �, and is presented in Ref. [13]. The results
pertaining to the combinations of clamped (C) and free (F) boundary conditions are also
presented there. In this paper, the effect of different boundary conditions that may arise from
different combinations of clamped (C), simply supported (S) and free (F) edges of a plate are
studied. The boundary condition of the plate is specified, through its edge conditions (C, S or F),
in anticlockwise direction starting from the edge x ¼ 0. The numerical study is carried out for a
400mm square steel plate of 2.5mm thickness having E ¼ 2:1� 1011 Pa, r ¼ 7850Kg=m3 and
n ¼ 0:3.
For the clamped boundary condition, the results of geometrically nonlinear vibration analysis

are compared with those of different researchers and are presented in Table 1. In case of simply
supported boundary conditions, variation of nonlinear frequency with amplitude of motion is
compared to that of Chia [18]. However, he has furnished the plot for the first nonlinear frequency
only. The result of Chia is obtained by digitizing the relevant graph and the discrete values are
indicated as data points in Fig. 1(a). It may be noted that the present results match quite well to
that of the other researchers both for clamped and simply supported boundary conditions.
Figs. 1(a)–(f) show the nonlinear frequency amplitude relationships (backbone curves) of the

plate having typical combinations of boundary conditions. Each of these figures represents first
six vibration modes in dimensionless form. The ratio of the maximum plate deflection to plate
thickness is taken as the dimensionless amplitude w�ð¼ Wmax=hÞ while the nonlinear frequency is
normalized ðonl=o1Þ by the corresponding fundamental linear frequency ðo1Þ. However, SFFF
boundary conditions give rise to rigid body modes of vibration [19], the corresponding frequency
parameters being zero. Hence, SFFF plate is normalised with respect to o2.
It is observed that with decreasing rigidity of the plate, as the number of free edges in the

boundary condition increase, the backbone curves for different modes spread apart. In an earlier
Table 1

Comparison of nonlinear frequency ratios of a square plate with all edges clamped

Wmax=h

0.2 0.4 0.6 0.8 1.0

Lau et al. [16] 1.0196 1.0763 1.1645 1.2779 1.4109

Chandrasekharappa and Srirangarayan [17] 1.0143 1.0572 1.1288 1.2290 1.3578

Present study 1.026 1.098 1.233 1.381 1.568
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Fig. 1. Backbone curves for (a) SSSS boundary conditions (}: points taken from Ref. [18]); (b) SSFF boundary

conditions; (c) SFFF boundary conditions; (d) CCSS boundary conditions; (e) CSSF boundary conditions; (f) CFSF

boundary conditions.
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study [20], it is observed that the degree of nonlinearity has a pronounced effect on the frequency
parameter. Thus it can be stated that plates with different boundary conditions possess different
degrees of nonlinearity.
The effect of vibration amplitude on the dynamic behaviour of the plate is highlighted also in

the mode shape plots for all the six vibration modes. Both linear (corresponding to w� ¼ 0) and
nonlinear (corresponding to w� ¼ 2:0) mode shapes for two specific boundary conditions (SFFF
and CCSS) are shown in Figs. 2(a) and (b). The degree of nonlinearity manifested through a
change in a particular mode shape, appears to be more pronounced for higher modes of vibration.
Fig. 2. Mode shape plots for (a) SFFF boundary condition; (b) CCSS boundary condition.



ARTICLE IN PRESS

Fig. 2. (Continued)
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Phenomenon of mode switching with amplitude of vibration is observed for some specific
boundary conditions only, as shown in Figs. 1(a)–(d). This phenomenon has been appropriately
supported in the corresponding mode shape plots (Figs. 2(a) and (b)). A similar trend of mode
switching phenomenon has been observed by Singh [20] for a trapezoidal shallow shell with CFCF
boundary condition.
In Figs. 2(a) and (b), quite a few mode shape plots are apparently found to be identical both for

linear ðw� ¼ 0:0Þ and nonlinear ðw� ¼ 2:0Þ cases. However, a micro-level study is also carried out
for both the boundary conditions and the corresponding mode shape plots, taken at a suitable
cross-section of the vibrating plate, and are presented in Figs. 3(a) and (b), respectively. In the
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Fig. 2. (Continued)
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Fig. 2. (Continued)
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study, further elaboration is obtained by including the mode shape corresponding to w� ¼ 1:0.
The figures reveal that effect of nonlinearity on mode shape is quite appreciable as w� is increased
from 0 to 2.0. In fact this effect is more pronounced as the boundary conditions are changed from
rigid to flexible.
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Fig. 3. Effect of amplitude on mode shape taken at a suitable cross section of a vibrating plate with (a) SFFF boundary

condition; _ _ _ _ W � ¼ 0:0, ______ W � ¼ 1:0, _ . _ . _ W � ¼ 2:0. (b) CCSS boundary condition; _ _ _ _ W � ¼ 0:0,
______ W � ¼ 1:0, _ . _ . _ W � ¼ 2:0.
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Fig. 3. (Continued)
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6. Conclusion

Large amplitude free vibration analysis of a thin square plate with different nonclassical
boundary conditions is investigated. The study is carried out following a novel method in which
static analysis serves as the basis for the subsequent dynamic study. The results of nonlinear
analyses are validated with the published results of other researchers and excellent agreement is
observed. It can be applied to any kind of boundary condition as pointed out in the present paper
and the backbone curves documented may be used by the practicing engineers as design curves.
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